Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 27(13-14): 857-866, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32907497

RESUMO

Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Animais , Apoptose , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Camundongos
2.
Tissue Eng Part A ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33085922

RESUMO

Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.

3.
Mol Ther ; 28(7): 1614-1627, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32402245

RESUMO

The conversion of human fibroblasts into personalized induced neural stem cells (iNSCs) that actively seek out tumors and deliver cytotoxic agents is a highly promising approach for treating various types of cancer. However, the ability to generate iNSCs from the skin of cancer patients has not been explored. Here, we take an important step toward clinical application by generating iNSCs from skin biopsies of human patients undergoing treatment for the aggressive brain cancer, glioblastoma (GBM). We then utilized a panel of functional and genomic studies to investigate the efficacy and tumor-homing capacity of these patient-derived cells, as well as genomic analysis, to characterize the impact of interpatient variability on this personalized cell therapy. From the skin-tissue biopsies, we established fibroblasts and transdifferentiated the cells into iNSCs. Genomic and functional testing revealed marked variability in growth rates, therapeutic agent production, and gene expression during fibroblast-to-iNSC conversion among patient lines. In vivo testing showed patient-derived iNSCs home to tumors, yet rates and expression of homing-related pathways varied among patients. With the use of surgical-resection mouse models of invasive human cluster of differentiation 133+ (CD133+) GBM cells and serial kinetic imaging, we found that "high-performing" patient-derived iNSC lines reduced the volume of GBM cells 60-fold and extended survival from 28 to 45 days. Treatment with "low-performing" patient lines had minimal effect on tumor growth, but the anti-tumor effect could be rescued by increasing the intracavity dose. Together, these data show, for the first time, that tumor-homing iNSCs can be generated from the skin of cancer patients and efficaciously suppress tumor growth. We also begin to define genetic markers that could be used to identify cells that will contain the most effective attributes for tumor homing and kill in human patients, including high gene expression of the semaphorin-3B (SEMA3B), which is known to be involved in neuronal cell migration. These studies should serve as an important guide toward clinical GBM therapy, where the personalized nature of optimized iNSC therapy has the potential to avoid transplant rejection and maximize treatment durability.


Assuntos
Glioblastoma/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Glicoproteínas de Membrana/genética , Células-Tronco Neurais/transplante , Semaforinas/genética , Pele/citologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Transdiferenciação Celular , Células Cultivadas , Feminino , Fibroblastos/citologia , Glioblastoma/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Células-Tronco Neurais/citologia , Cultura Primária de Células , Ratos , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...